

PanelingTools for Grasshopper

PanelingTools helps designers create paneling solutions from concept to fabrication.
Development of the PanelingTools plug-in for Rhino started in 2008. PanelingTools facilitates conceptual and
detailed design of paneling patterns using NURBS and mesh geometry. PanelingTools is closely integrated with
the Rhinoceros environment using standard Rhino geometry. PanelingTools also extends RhinoScript and
Python for completely customized paneling and Grasshopper for parametric modeling.
I am always happy to hear from you and learn how you are using PanelingTools and how to improve it. If you
have any questions or suggestions to further its development, feel free to contact me.

Rajaa Issa
Robert McNeel & Associates
Rhinoceros Development team
rajaa@mcneel.com

Copyright © 2013 Robert McNeel & Associates. All rights reserved.
Rhinoceros is a registered trademark, and Rhino is a trademark of Robert McNeel & Associates.

i

mailto:rajaa@mcneel.com

Chapter 1: Getting Started with PanelingTools

Chapter 1: Getting Started with PanelingTools
PanelingTools for Grasshopper is under active development. New functionality is added frequently, and like
other McNeel products, your feedback is very important and continuously shapes and steers the development.
Note: A working knowledge of the Grasshopper interface is required to be able to use PanelingTools for
Grasshopper.

Download and Install

To download PanelingTools for Grasshopper

 Go to http://www.grasshopper3d.com/group/panelingtools, and click Download to get the latest
PanelingTools for Rhino 5 Plugin and PT-GH Add On.
All PanelingTools instructions, documentation, and discussions are available there.

Technical Support
Suggestions, bug reports, and comments are very much encouraged. Please share your stories, examples,
and experiences with us. Post questions to our discussion forum
http://www.grasshopper3d.com/group/panelingtools or e-mail us directly.
Visit http://www.rhino3D.com/support.htm for more details.

The Main Menu
When you install PanelingTools, a new PanelingTools menu item is added to the Rhino menu bar. You can
access all of the PanelingTools commands from there. When you open Grasshopper, a new PanelingTools tab
is added to the Grasshopper window. It includes all PanelingTools for Grasshopper components.

Toolbars
In addition to the menu, a set of toolbars is installed for PanelingTools for Rhino.

To load the PanelingTools toolbars

1. From the Tools menu, click Toolbar Layout.

2. Under Files, click PanelingTools, and in the Toolbars list, check the PanelingTools box.

Overview of Paneling Elements
Paneling is typically done in two steps:

1. Create a grid.
Create a rectangular paneling grid of points. Creating a paneling grid results in points that can be
manipulated with any Grasshopper standard component or PanelingTools Grid Utility components.

3

http://v5.rhino3d.com/group/panelingtools
http://www.grasshopper3d.com/group/panelingtools
http://www.rhino3d.com/support.htm

Chapter 1: Getting Started with PanelingTools

2. Populate the grid with paneling elements.
Populate a pattern or modules of curves, surfaces, and polysurfaces. Generating the paneling creates
patterns and applies the patterns to a valid paneling grid of points. The resulting paneling is standard
Rhino geometry in the form of curves, surfaces, or meshes. To further process panels with such
commands as Unroll, Offset, Pipe, or Fin, use Panel Utility components and other Grasshopper
components.

Components:
Planar Grid
Circle
Morph 2D

Output Panels.

The two-step process gives more flexibility and better control over the result. Normally, the initial grid is
generated interactively and is a good indicator of scale. The grid can be generated using the many grid-
generating commands or with scripting. The grid can be directly edited and refined before any paneling is
applied. Panels can be created using free-form patterns or user-defined patterns that connect grid points.

Create Paneling Grids
A paneling grid is a tree structure of Rhino point objects. For example, a typical output of a single grid is
arranged as illustrated below. In the figure, note the following:

 Paneling grids are represented using Grasshopper tree structure.

 Branches represent grid rows.

 Leaves represent points in each row (branches do not have be equal in length).

4

Chapter 1: Getting Started with PanelingTools

Components:

Planar Grid
Param Viewer
Param Viewer Draw Tree

Output grid.

One tree structure can hold a number of grids as illustrated below. In this case, the input has two base points.

Components:

Planar Grid with two base points
Param Viewer
Param Viewer Draw Tree

Paneling grids can be generated in many different
ways. The following is an overview of these methods.

Output grid.

5

Chapter 1: Getting Started with PanelingTools

Create Grids with Grasshopper Standard Components
You can use grids created within a Grasshopper environment as long as the output is a simple tree structure
of points where branches represent rows of points. For example, the Divide Curve component with multiple
curve input creates a structure like this making it a valid input for paneling components.

Components:

Divide Curve
Param Viewer
Param Viewer Draw Tree

Output grid.

Create Grids with PanelingTools Components
PanelingTools components make a variety of ways to create paneling available whether from scratch or
through using reference geometry. The simplest components that do not need a reference geometry are the
rectangular or polar grids as illustrated below.

Planar Grid

Output grid.

Polar Grid

Output grid.

6

Chapter 1: Getting Started with PanelingTools

Create a Grid with Reference Geometry
Grids can be based on existing geometry such as curves or surfaces. A variety of grid creation components in
PanelingTools can help with that.
For example, you might have an array of curves that we would like our grid to follow.

Components:
Divide Number
Param Viewer Draw Tree

Output grid.

Or, you might want the grid to follow a surface or a polysurface.

Components:

Surface Domain Number
Param Viewer Draw Tree

Output grid.

7

Chapter 1: Getting Started with PanelingTools

Grid Utilities
PanelingTools provides an array of components that help manipulate the grid as a whole. For example, you
might need to flip the direction of the grid (change the base point or swap rows and columns), edit some row
directions, or perhaps close the grid in one direction and extend it in another. Many other functions are easier
to handle through grid editing components than to do manually. For example, the following is an example of a
component that extracts a center grid from an existing grid.

Components:
Planar Grid
Center Grid

Output grid.

You might want to create a surface that goes through grid points.

Components:

Divide Number
Surface from Grid

Output grid.

8

Chapter 1: Getting Started with PanelingTools

Or, extract certain columns or rows from a grid.

Components:
Planar Grid
Extract Column
Panel. With column number to extract

Output column.

Paneling Patterns
In the context of the PanelingTools plugin, Paneling refers to the process of mapping geometry or modules to
a rectangular grid. Paneling can be either along one grid to generate 2-D patterns or between two bounding
grids to generate 3-D patterns. There are three main methods to panel:

1. Connect grid points to create edges, surfaces, or mesh faces of the intended pattern. This approach is
the fastest and can cover a wide variety of patterns. You can also use base surfaces to pull the geometry
to.

Components:

Planar Grid
Panel Connections
Panel. With unit connection string

Output panels.

9

Chapter 1: Getting Started with PanelingTools

2. Morph a unit module and distribute it over unit paneling grid. This approach can be more time
consuming, but allows for rich development of free-form patterns that do not conform to grid points.

Components:
Planar Grid
Morph 2D

2-D curve module. Output panels.

3. Morph a unit module in a variable way along the grid, depending on design constraints.

Start module

Components:
Planar Grid
Point Attraction
Morph 2D Mean

End module Output panels.

Attractors as a Design Element
PanelingTools for Grasshopper supports various ways to shuffle grid point locations or distribute variable
components based on attractors. Attractors can be points, curves, surface curvature, or other methods.
Attractor components calculate the weights of a corresponding input grid and output the attracted point grid
as well as the weights grid. Weights range between zero and one, reflecting the degree of attraction for each
point in the grid. At a weight of zero, the corresponding grid point is not affected by the attraction. At a weight
of one, the corresponding grid point will be affected at the maximum level. The following table displays the
available attraction methods:

Attraction Method Description

Points Positive values attract towards points, and negative values repel
away from points.

Curves Positive values attract towards curves, and negative values repel
away from curves.

10

Chapter 1: Getting Started with PanelingTools

Attraction Method Description

Mean Curvature Follow the surface mean curvature.

Gauss Curvature Follow the surface Gaussian curvature.

Vector Attract relative to an angle with predefined direction vector.

Random Randomly attract.

Weights Use an explicit map of attraction values (0-1) per grid point.

Draft Angle Attract relative to an angle with a plane normal direction.

Point Attraction
The input for the Point Attraction component is a grid of points (Gd), attractor points (A), and a magnitude
(M). The output is a shuffled grid of points (Gd) and weights (W). If the magnitude value is positive, the
points are attracted toward the input points. If the magnitude is negative, the points are repelled. The
boundary of the grid is always maintained.

To see an example

Open PT_GH_PrimerExamples\Component Examples\ptPointAtts.gh.
In the illustration below, the grid points attract towards the center attraction point, since magnitude (M) is
positive value.

In the illustration below, the grid points are repelled away from the center attraction point, since magnitude
(M) is negative value.

When you have a shuffled grid, cells will vary in size, and therefore populating a uniform module results in a
variable pattern size and shape.

11

Chapter 1: Getting Started with PanelingTools

For example, you can then use the attracted grid as input to populate a circle using the Morph 2D
component.

Components:

Point Attraction
Circle
Morph 2D

Output panels.

Bitmap Attraction
It is possible to use an image to change locations of grid points. In the following example, the black and white
image attracts the paneling grid. Points were moved depending on its greyscale value. The darker the sampled
points are, the farther they move.
Using the Grasshopper Number Slider component, the magnitude value in the Weight Attraction
component can be adjusted to increase or decrease the movement of grid points.

Components:

Planar Grid
Image Sampler
Number Slider. Named “Magnitude”
Weight Attraction

Output grid.

12

Chapter 1: Getting Started with PanelingTools

Select a grid
Grids can be generated using the PanelingTools plugin for Rhino (outside Grasshopper). Those grids can be
selected as input in Grasshopper.

To select a grid

1. Create a paneling grid inside Rhino.

2. On the Rhino PanelingTools menu, click Create Paneling Grid, and then click Array.

3. Change the options to create a grid with 10 points in the x-direction and 6 points in the y-direction.

4. To use this grid as input in our Grasshopper definition, use the Select Grid component, and then click
the icon in the component.

5. Select the grid you just created, and press Enter.
The selected points are organized into six rows with 10 elements in each row.

Components:

Select Grid
Point

Output grid.

Bake a Grid
Grasshopper does not create real Rhino objects; geometry is calculated and are then displayed on screen . To
add the geometry to the Rhino document, you can bake grids created with Grasshopper into Rhino in a format
that can be used by PanelingTools commands in Rhino.
Note: Paneling grids in the Rhino document are ordered grids. In Grasshopper, you can maintain ordering
using the tree structure. In Rhino, PanelingTools tags each grid point with its (row,col) location using the
Object Property name. Baking a grid adds points to Rhino and assigns the (row,col) information as an object
name to these points.

To create actual geometry from the definition

1. Add a Planar Grid component to the canvas.

2. Pick two base points (B) in the Rhino viewport.

3. Set the shift in the i-direction (Si) to 0.9.

13

Chapter 1: Getting Started with PanelingTools

4. Set the shift in the j-direction (Sj) to 1.5.

5. Set the number of points in the i-direction (Ei) to 4.

6. Set the number of points in the j-direction (Ej) to 6.

7. Use the Bake Grid component to bake the two grids into Rhino by setting the Toggle to True.

8. Be sure set the Toggle back to False so that you do not get multiple bakes whenever the solution is
recalculated.

Components:
Boolean Toggle
Bake Grid

Output two grids in Rhino.

14

Chapter 2: Tutorials

Chapter 2: Tutorials
This section introduces a number of tutorials that are meant to show how PanelingTools for Grasshopper is
used to create parametric paneling solutions. It should give you a general idea about the context in which
these tools may be used.

Diamond Panels
This tutorial introduces two different methods to create diamond panels. The first creates diamond panels by
converting a rectangular grid into a diamond grid then paneling the new grid. The second keeps the
rectangular grid but defines a connecting pattern for the diamond panels. Both are valid approaches, and you
can choose the one that works best with your workflow.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\DiamondPanels.gh.

Create diamond panels

1. Create an uncapped cylinder using Grasshopper standard components.

Components:
Circle
Unit Z
Extrude

Output cylinder.

2. Create a rectangular grid of points using the Grid > Surface Domain Number component.
The grid distribution follows the isocurve direction of the underlying surface. In this example, the
u-direction of the surface is vertical and hence the row directions are vertical. Each row has 16 spans
(17 points). Columns are in the circular direction and each column has 60 spans (61 points). The first
and last points in each of the 17 columns overlap because the surface is a closed surface.

Components:
Extrude
Surface Domain Number
Param Viewer

Output grid.

15

Chapter 2: Tutorials

3. Following the first method of creating diamond panels, you can use the Grid Utility > Convert to
Diamond component to extract a new rectangular grid in the diagonal direction and then use the
Panel2D > Cellulate component to create the panels.

Components:

Surface Domain Number
Param Viewer - rows of the diamond grid have

 a variable number of elements
Cellulate - creates panels

Output panels.

Notice that there are missing panels along the seam. This is because the pattern effectively ran out of grid
points to cover. To deal with this situation, you need to wrap the grid so that one extra row overlaps the
second row. The first and last rows already overlap, so we just need one extra row. Use the Grid Utility >
Wrap Grids component.

Components:
Wrap Grids

 Parameters:
 Wrap direction (D)
 Number of rows/columns to wrap (N)
 Starting index (I)

Output panels.

Another approach to creating diamond panels is to use the Panel2D > Panel Connections component. We
still need to create the grid and wrap it one extra row. The following example illustrates how the definition
works. Each of the three Panel Connections components accepts a grid (Gd), a shift in the u-direction (si)
and in the v-direction (sj), and a string (Pn) that represents the uv-unit points each pattern connects.

16

Chapter 2: Tutorials

Components:

Surface Domain Number
Wrap Grids

The first group of

 diamond panels

The second group of

 diamond panels

The third group of

 panels along the edge

17

Chapter 2: Tutorials

Fixed Gaps Between Panels
This tutorial shows how to achieve a fixed gap between panels that are based on a free-form surface.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\FixGap.gh.
Note: In the example file, the Preview is turned off for all but the final paneling result. Components colored
dark gray have their Preview turned off. To see the output on the intermediate steps, turn the Preview on
for the components.

1. Start the definition by creating a free-form loft surface from two NURBS curves (Grasshopper >
Surface > Freeform > Loft).

Components:

Vertices - control points for loft curves
Curve. Generated loft curves
Loft

Generated loft surface.

18

Chapter 2: Tutorials

2. Create a grid on the surface using the PanelingTools > Grid > Surface Domain Number component.

Components:
Number Slider. Number of points in u- and

v-directions
Grid. Generated grid

Generated grid on surface.

3. Use the PanelingTools > Panel2D > Generate Borders component to get the panels as a polycurve
outline.

4. Use the Grasshopper > Util > Offset on Srf component to offset the panel outline by a fixed distance
on the surface.

19

Chapter 2: Tutorials

Loft Morphed Curves
This tutorial shows how to:

 Create an attracted grid

 Morph module curves in 3-D space

 Create 3-D modules from morphed curves

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\LoftMorphedCurves.gh.

To create the grid

1. Start the Grasshopper definition by creating a rectangular grid using the PanelingTools > Grid >
Planar Grid component.

Parameters:
 B (base point) = 1.0,10.0,0
Di (row dir) = 1.0,0.0,0.0
Dj (col dir) = 0.0,1.0,0.0
Si (row spacing) = 1.0
Sj (col spacing) = 1.5
Ei (row number) = 6
Ej (col number) = 6.

20

Chapter 2: Tutorials

2. With the PanelingTools > Grid Attractors > Point Attraction component, add an attractor point and
change the grid points to attract towards the attractor point.

Parameters:
Gd (grid) = grid to be attracted
A (attractor point) = 5.0,12.0,0.0
M (Magnitude of attraction) = 1
Gd (output) = attracted grid
W = weights grid (attraction degree for each grid point 0-1)

3. Copy the original planar grid in the z-direction to create a second bounding grid to populate the module
between the two grids.

Parameters:
G = input geometry
T = input vector

4. Create the module curves in Rhino.
In this case, three curves define a lofted surface. We will morph the curves rather than the lofted surface
because it is faster and more efficient.

First module curve
Second module curve
Third module curve
Lofted surface

21

Chapter 2: Tutorials

5. Reference the module curves in the next step to morph between our two bounding grids using the
PanelingTools > Panel3D > Morph 3D component.

Parameters:
Gd1 = first bounding grid
Gd2 = second bounding grid
PO = pattern objects
BO (optional) = bounding objects for the pattern objects
si = shift in the i direction = 1 (default)
sj = shift in the j direction = 1 (default)
p = pull for smooth morphing = false (default)
S1(optional) = grid1 surface
S2 (optional) = grid2 surface
Note: The output curves from the Morph 3D component are organized into three branches.
{0;0} holds morphed a curves.
{0;1} holds morphed b curves.
{0;2} holds morphed c curves.

6. Separate the three branches of the tree, then graft each branch before feeding into the Grasshopper >

Freeform > Loft component as illustrated.

This how the lofted modules look:

22

Chapter 2: Tutorials

23

Chapter 2: Tutorials

Spiral Staircase

This tutorial shows how to create parametric steps for a spiral staircase.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\SpiralStaircase.gh.
The parameters that control the shape of the spiral staircase are as follows:

Center of the spiral staircase
Radius of the center hole
Step width
Angle between steps
Number of steps
Step rise
Step height

Create a spiral staircase

1. Define the position of the staircase and the width of the central cylindrical hole using two planes.

24

Chapter 2: Tutorials

2. Generate the base grid for the stairs using the PanelingTools > Grid > Polar 3D Grid component.

3. Create the base panel for the stairs using the PanelingTools > Panel2D > Cellulate component.

The remaining steps involve using Grasshopper components to raise the stairs and add thickness to
them.

25

Chapter 2: Tutorials

Parametric 2-D Truss
This tutorial shows how to create a parametric truss based on a curve. The truss is based on David Fano’s
truss tutorial. The main advantages of using PanelingTools-Grasshopper over Grasshopper standard
components are:

 The system logic is easier to understand, create, and edit.

 The system logic is more flexible. It is not restricted to surfaces and their isocurve directions, which
greatly limit control over dimensions and orientation of truss components.

 The truss component logic is based on points, rather than surfaces, which is lighter.

The overall definition is structured into two parts: the system logic and the component logic. The component
logic uses standard Grasshopper components based on four corner points. The system logic defines a
rectangular grid of cells using PanelingTools-Grasshopper components.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\Truss.gh.

System logic
Component logic
Create system grid
Extract components corners in the system

Create a parametric truss

1. Create a reference a curve in Rhino.

2. Divide the curve by a distance that represents the width of the truss.
Note: PanelingTools for Grasshopper provides a variety of ways to generate a basic grid of cells using
the Grid panel or simply by feeding a tree structure of points using Grasshopper standard components.

3. Place a PanelingTools > Grid > Planar Extrude component on the canvas.
Grid components generate two-dimensional grids of points and organize them into a simple Grasshopper
tree structure where each branch contains a list of points representing grid rows.

26

http://designreform.net/2011/03/rhino-grasshopper-parametric-truss-update
http://designreform.net/2011/03/rhino-grasshopper-parametric-truss-update

Chapter 2: Tutorials

4. Use the PanelingTools > Panel2D > Cellulate component to extract individual cells of the grid.
It outputs three components:
W (wires): a list of all edges
C (cells): a list of the four corners of each cell (this is what we need here)
M (meshes): a list of mesh faces of all cells

We now have 10 cells; each has four corners. We need to get a separate list of each corner to feed into
our component logic.

27

Chapter 2: Tutorials

5. Use the Grasshopper List component to separate into four lists of corners.

6. Create the component logic of the truss units based on four points.

7. Divide this into two triangles.
Each triangle can have its own thickness and creates a trimmed planar surface.

Components:

Truss unit corners
Upper and lower triangle polylines
Offset triangles by distance specified in the slider
Join
Create planar surface

28

Chapter 2: Tutorials

8. Hook the system points into the custom truss component logic that is based on four points.

This is what the final truss looks like.

29

Chapter 2: Tutorials

Parametric Space Frame
This tutorial shows how to create a parametric space frame based on a curve. While it is possible to create a
similar definition using standard Grasshopper components, using PanelingTools for Grasshopper makes the
definition easier to write, read, and edit. It also enables better control over dimensions and shape.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\SpaceFrame.gh.

This is how the final definition looks:

Create a space frame

1. Use the PanelingTools > Curve > Divide Distance to divide a curve by a distance that represents the
width of the base cells of the space frame.

30

Chapter 2: Tutorials

2. Generate the grid using the PanelingTools > Grid > Planar Extrude component.

3. Extract the center grid using the PanelingTools > Utilities > Center Grid component.

4. Move the center grid in the normal direction to create the top bounding grid of the space frame. In
order to move the grid in the normal direction, use the coordinate component that extracts origin of
each grid cell and x, y and z directions.

31

Chapter 2: Tutorials

5. Use Grasshopper Sphere component to create small spheres to mark the joints.
Input both the base grid and moved center grid.

6. Use the PanelingTools > Panel3D > Cellulate 3D Grid component to generate the bottom and top

wires.
Wall wires and faces of the space frame are created with the Panel 3D Connections component where
each face is defined by a string. The string defines indices of the grid to connect. These connections are
repeated throughout the grid.

32

Chapter 2: Tutorials

7. Wires from the top, bottom, and walls are then used to generate edge pieces of the space frame using
the Grasshopper Cylinder component.

33

Chapter 2: Tutorials

Variable Wall

This tutorial shows how to create a parametric wall with variable system and variable components based on a
curve. The Wall component logic is based on four-corner points system. It uses a PanelingTools attractor
component to create a variable component. The system logic defines a rectangular grid of cells. The system
has variable cell size using the PanelingTools > Grid Attractors > Curve Attraction component.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\Wall.gh.

System logic
Component logic
Create system grid
Extract components corners in the system

Create a parametric wall

1. Start with building the component logic.
The following image shows an overview of the component logic based on four corner points and weights
that controls the shapes of edge curves. Keep in mind that once the component logic is hooked to the
system logic, there will be a list of corner points instead of just one. This is why we need extra steps like
flattening and grafting the lists to get correct results. This is how the final component logic defition looks
like.

34

Chapter 2: Tutorials

The component logic defines four corner points and a midpoint, and then connects each of the corner
points with the center using the Grasshopper Line component.

35

Chapter 2: Tutorials

2. Define points on each of the lines that fall within the line’s domain.
Here we are using a Number component to generate a constant number. You can also hook up a
Number Slider with values between 0 and 1 to see the effect of changing the weight on the final
component.

3. Create a curve using the corner and line points as illustrated.

36

Chapter 2: Tutorials

All 8 component points
Flatten and graft necessary when hook to system
Create edge curves
Create edge surface

This concludes the creation of the parametric component. Each component represents a cell in the wall
system that we will build next.

4. Create the wall system based on a curve created in Rhino and referenced in Grasshopper.
You can use any of the Curve Divide components to get the list of points to feed into the Extrude
components.

37

Chapter 2: Tutorials

Input base curve
Divide curves by distance
Grid from extrude

5. Use a PanelingTools > Grid Attractors > Point Attraction component to vary the cell size and

shuffle the grid points.
The green points shift towards the attractor point (red points are the original grid points locations).

6. Use the PanelingTools > Panel2D > Cellulite component to extract lists of corner points of the
system cells to feed into our component logic
Separate each of the corners as illustrated.

38

Chapter 2: Tutorials

Separate corners into 4 lists

Once we hook the system into the component logic, we get components populated over the system.

System logic
Component logic

39

Chapter 2: Tutorials

7. In order to make the component distribution variable, feed variable weights based on the distance from
the attractor point.

Connect the system logic to the component logic
Variable weights
Constant weights
Attractor point

Here is the result when using variable weights.

40

Chapter 2: Tutorials

Tower

This tutorial distributes a list of variable mesh-based modules on the tower skin based on a curve attractor.
The modules have variable opening size and are distributed so that modules with the biggest opening attract
closer to the curve. The modules were modeled in Rhino, but you can choose to parametrically define a
module inside grasshopper and control the aperture using the attractors.
The first step is to module the geometry elements in Rhino. In this case, we have the tower surface, attractor
curve and the module-list.

To see an example

Open ..\PT_GH_PrimerExamples\Tutorial Examples\Tower.3dm and Tower.gh.

41

Chapter 2: Tutorials

Create the tower panel

1. Start the definition with a Params > Geometry > Surface component and select the tower surface
from Rhino.

Reference surface parameter

2. Feed the surface into a PanelingTools > Grid > Surface Domain Number component.

Components:

Number Slider for the u-direction
Number Slider for the v-direction
Surface – input existing surface
Grid > Surface Domain Number

Once we have the grid, we need to offset in a direction normal to the surface.

42

Chapter 2: Tutorials

3. Use the Coordinates component to calculate the normal direction at each grid point.

Components:

Input grid
Coordinate – calculates the x, y, z direction of each grid point relative to input surface
Amplitude – specifies the offset amount
Move – moves the grid point in normal direction

4. Create an attraction field (grid of weights) to feed into the paneling component.

Components:

CrvAtts - attractor curve
Curve Attraction - calculates weights at each grid point
Mesh - input list of modules
Morph3D List - distributes the list of components on the grid using attraction values

43

Section II: Components Reference

Section II: Components Reference

44

Chapter 3: Curve Components

Chapter 3: Curve Components
These components divide a NURBS curve using various controls.

Divide Distance (ptDivideDis)
The Divide Distance (ptDivideDis) component calculates divide points on a curve or list of curves by
specified distance with an option to add end point(s).

Input

C: Curve(s) to divide
D: Distance between points
E: Option to add end point if set to True

Output

P: List of divide points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideDis.gh.

Divide Distance with Reference (ptDivideDisRef)
The Divide Distance with Reference (ptDivideDisRef) component divides curves by distance with
reference point. Reference point is used to control the location of divide points.

Input

C: Curve(s) to divide
D: Distance between points
P: Reference point. Calculates the closest point on the curve to the reference point, then divides the two sides
of the curve by the distance (D)

Output

P: List of divide points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideDisRef.gh.

45

Chapter 3: Curve Components

Divide Length (ptDivideLen)
The Divide Length with Reference (ptDivideLen) component calculates divide points on a curve or list of
curves by specified length on the curve with an option to round the distance up or down. If rounded, the curve
is divided into equal lengths.

Input

C: Curve(s) to divide
D: Length on curve
Ru: Round the length up if set to True
Rd: Round the length down if set to True

Output

P: List of divide points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideLen.gh.

Divide Length with Reference (ptDivideLenRef)
The Divide Length with Reference (ptDivideLenRef) component calculates divide points on a curve or list
of curves by specified length on the curve. A reference point is used to control the location of the divide
points.

Input

C: Curve(s) to divide
D: Length on curve
P: Reference point. Calculates the closest point on the curve to the reference point, and then divides the two
sides of the curve by the distance (D)

Output

P: List of divide points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideDisRef.gh.

46

Chapter 3: Curve Components

Divide Number (ptDivideNum)
The Divide Number (ptDivideNum) component calculates divide points on a curve or list of curves by a
specified number.

Input

C: Curve(s) to divide
N: Number of spans. An input of 10 generates 11 points

Output

P: List of divide points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideNum.gh.

Divide Parameter (ptDivideParam)
The Divide Parameter (ptDivideParam) component calculates divide points on a curve f list of curves from
a list of parameters.

Input

C: Curve(s) to divide
T: Parameter list
N: Normalize if set to True

Output

P: List of divide points.

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDivideParam.gh.
When Normalize (N) is set to True, the input Curve (C) is divided to equal spans if the distance between
parameter values is equal, regardless of the curve parameterization or domain.

47

Chapter 3: Curve Components

When Normalize (N) is set to false, the input Curve (C) is divided into equal spans in parameter space, which
may not translate to equal spans in 3-D space.

48

Chapter 4: Grid Components

Chapter 4: Grid Components
These components generate paneling grids and organize them in a tree structure where branches represent
rows of points.

Compose Grid (ptCompose)
The Compose Grid (ptCompose) component creates grids from scratch. It takes a list of points and two
integer lists to define the (i,j) location of each point in the grid

Input

P: List of points
i: List of i indices of corresponding points
j: List of j indices of corresponding points

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCompose.gh.
The example shows how to organize a list of eight points into a grid. Define the index of each point in the grid
(row, column location). For example, the first three points make the first row in the grid. Notice that their row
location (i) is set to 0, and the column locations (j) are 0, 1, and 2.

Components:

Panel - list of points
Panel - row indices of the points

 Panel - first row
 Panel - second row
 Panel - third row

Panel - column indices of the points
Compose - creates the grid
Cellulate - generates cell data

49

Chapter 4: Grid Components

Compose Grid Number (ptComposeNum)
The Compose Grid Number (ptComposeNum) component assumes that the resulting grid will have equal
number of points in each row (rectangular grid). It takes a list of points and number of rows and outputs the
grid. If the number of input points is not divisible by the input number of rows, then the remainder will make
the last row of the grid.

Input

P: List of points
N: Number of rows

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptComposeNum.gh.
The example shows how to organize a list of eight points into a grid that has three rows. It assumes that
points are listed in order. This means that the first input point becomes the base point (the first point of the
first row). The second input point becomes the second point in the first row, and so on until all rows are filled.
Note that the last row contains fewer points.

Intersect Curves (ptUVCrvs)
The Intersect Curves (ptUVCrvs) component generates a grid from intersecting two sets of curves. The
first set defines the row direction of the grid, and the second set defines the column direction.

Input

Cu: List of curves in the u-direction (row)
Cv: List of curves in the v-direction (column)

Output

Gd: Grid

50

Chapter 4: Grid Components

Example

 Open ..\PT_GH_PrimerExamples\Component Examples\ptUVCurves.gh.
In the example, two sets of lines in the x- and y-directions are generated, and the grid is created from the
intersections of the lines. The generated grid has six rows and ten columns. Intersecting curves do not have to
be planar or linear.

Planar Extrude (ptPlanarExtrude)
The Planar Extrude (ptPlanarExtrude) component creates extruded grids.

Input

P: List of points (represents first row)
D: Extrude direction (represents columns direction)
N: Number of rows
S: Distance between rows

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPlanarExtrude.gh.

51

Chapter 4: Grid Components

Planar Grid (ptPlanar)
The Planar Grid (ptPlanar) component creates parallel planar grids. The u- and v-directions of the grid do
not have to be orthogonal.

Input

B: Base point
Di: Direction of the rows
Dj: Direction of the columns
Si: Distance between rows
Sj: Distance between columns
Ei: Number of rows
Ej: Number of columns

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPlanar.gh.
Planar grids can have specified row and column directions. Using multiple base points creates more than one
grid represented in one tree structure.

52

Chapter 4: Grid Components

Polar 3D Grid (ptPolar3D)
The Polar 3D Grid (ptPolar3D) component creates polar 3-D grids. The component takes two input planes.
The first defines the base plane and rotation axis, and the second defines the grid base point and the first row
direction.

Input

BP: Base plane - defines the base plane and rotation axis
RP: Revolve plane - defines the grid base point and the first row direction
Sr: Distance between points in the radial direction
Sp: Angle (in degrees) in the polar direction
Er: Number of points in the radial direction (number of columns)
Ep: Number of points in the polar direction (number of rows)
FC: Create a full closed circle (ignores angle set in Sp)

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPolar3D.gh.
You can define plane direction and input multiple planes.

53

Chapter 4: Grid Components

Polar Extrude (ptPolarExtrude)
The Polar Extrude (ptPolarExtrude) component creates polar 3-D grids. The component takes two input
planes: the base plane and rotation axis and the grid base point and the first row direction.

Input

P: List of points (represent first row)
B: Base point of the rotation axis
D: Rotation axis
N: Number of rows
A: Angle between rows
FC: Create a full closed circle (ignores angle set in A)

Output

Gd: Grid

Example

 Open ..\PT_GH_PrimerExamples\Component Examples\ptPolarExtrude.gh.

54

Chapter 4: Grid Components

Polar Grid (ptPolar2D)
The Polar Grid (ptPolar2D) component creates polar planar grids.

Input

B: Base plane
Sr: Distance between points in radial direction
Sp: Angle (in degrees) in polar direction
Er: Number of points in radial direction (number of columns)
Ep: Number of points in polar direction (number of rows)
FC: Create a full closed circle (ignores angle set in Sp)

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPolar2D.gh.
You can define a plane direction and input multiple planes.

55

Chapter 4: Grid Components

Surface Distance (ptSrfDis)
The Surface Distance (ptSrfDis) component attempts to divide a surface by equal distances. The underlying
algorithm can take some time to calculate. The distances in u-and v-direction must be multiples of each other.
The distance between points is maintained throughout the grid. In some cases, because of the surface
curvature, the grid cannot cover the whole surface.

Input

S: Input surface
du: Distance in the u-direction
dv: Distance in the v-direction
E: Calculate on extended surface to achieve better coverage
P: (optional) Reference point - sets a uv parameter on the surface that the grid is forced through

Output

Gd: grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSrfDis.gh.
The following example shows the difference between setting E input parameter to False and True. The
v-distance (dv) is a multiple of the u-distance (du). If you need distances like 2.2 and 3.3, you can set the
grid to be 2.2 and 1.1 and then decrease grid density (in the 1.1 direction) using the Grid Density
component.

56

Chapter 4: Grid Components

The v-distance (dv) has to be the same of a multiple of the u-distance (du). If you need non-multiple
distances, for example to be 3.3 in the u-direction and 2.2 in the v-direction, you can decrease the grid
density using the Grid Density component as in the following.

Surface Domain Chord Distance (ptSrfDomChord)
The Surface Domain Chord Distance (ptSrfDomChord) component is similar to the Surface Domain
Length component except the distance between points is set to the 3-D direct distance rather than the length
on the curve. The Surface Domain Chord Distance component has similar options with the ability to set
reference point to control the location of the grid.

Input

S: Input surface
uD: Distance in u-direction
vV: Distance in v-direction
P: Reference point

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSrfDomChord.gh.

57

Chapter 4: Grid Components

Surface Domain Length (ptSrfDomLen)
The Surface Domain Length (ptSrfDomLen) component gives control over how to divide a surface domain
using parameter space.

Input

S: Input surface
uL: Length on surface in u-direction
vL: Length on surface in v-direction
P: Reference point

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSrfDomLen.gh.
For a planar or extruded surface, the distances are exact across the surface, but if the surface is curved in two
directions, distances will vary. The base u- and v-isocurves are divided exactly by the specified distance. The
rest of the surface will probably have other distances depending on the shape of the surface. For free-form
surfaces, it is impossible to follow the surface domain while maintaining constant distances on surface.

It is also possible to control the location of the grid on the surface by setting the P input parameter to a point
on the surface. The exact divide distance is achieved on the isocurves that go through that reference point.

58

Chapter 4: Grid Components

Surface Domain Number (ptSrfDomNum)
The Surface Domain Number (ptSrfDomNum) component generates a grid using a surface and follows the
surface domain direction.

Input

S: List of curves in the u-direction (row)
uN: Number of spans in the u-direction
vN: Number of spans in the v-direction

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSrfDomNum.gh.
The surface in the image below is divided into six branches; each has nine points.

PanelingTools Surface Domain Number

When using Surface Domain Number, while the points follow the isocurve directions of the surface, they are
not affected by the surface parameterization. The surface will be divided equal distances if possible.

Contrast with Grasshopper Divide Surface

If you divide the same surface using Grasshopper Divide Surface component, the points might be spaced
unevenly because the Divide Surface component actually divides the domain (in parameter space) into equal
distances, which does not necessarily translate into equal spacing in 3-D space.

Another difference between the Surface Domain Number component and Grasshopper Divide Surface
component is the way output is organized. The output tree from Surface Domain Number arranges rows
data in branches, while Divide Surface arranges the data by columns.

59

Chapter 4: Grid Components

Surface Parameter (ptSrfParam)
The Surface Parameter (ptSrfParam) component controls how to divide the surface domain using
parameter space.

Input

S: Input surface
U: Parameter list (0-1) that divides the domain in u-direction
V: Parameter list (0-1) that divides the domain in v-direction
N: Option to use normalized distance to achieve more even distribution

Output

Gd: Grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSrfParam.gh.
The Surface Parameter component controls how the domain is divided. Set N to False if you want the result
to follow the surface parameterization. This achieves similar result to Grasshopper Divide Surface
component, except that output data is organized with rows as branches, while Divide Surface organizes it
with columns as branches.

Set N to True to achieve a result similar to that of Surface Domain Number with relatively even distances.

60

Chapter 4: Grid Components

This component is most useful when you have variable distances that you would like to divide. In this case, N
to True to get an outcome that is not affected by how the input surface is parameterized, as shown in the next
illustration.

61

Chapter 5: Grid Attractors Components

Chapter 5: Grid Attractors Components
These components adjust grid point locations based on various attractors.

Curve Attraction (ptCrvsAtts)
The Curve Attraction (ptCrvsAtts) component calculates new grid point locations based on attractor
curve(s). It also calculates the corresponding grid of weights (influence). Attraction can be magnified by
increasing the magnitude (M) value in the input. The edge points of the grid always move within the edge
boundary keeping the outline of the grid intact.

Input

Gd: Input grid
A: Attractor curves
M: Magnitude or degree of influence. A negative input cause points to repel from the attractor

Output

Gd: Resulting grid
W: Grid of weights (0–1)

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCrvAtts.gh.
The example generates a rectangular grid and then defines a centerline to be the attractor.

Direction Attraction (ptDirAtts)
The Direction Attraction (ptDirAtts) component calculates the attraction field based on relative angles
between the normal direction of each point (on the grid surface) and that of a specified direction. This can be
useful if, for example, you need to modify the grid based on the sun direction or the viewing angle.

Input

Gd: Input grid
M: Magnitude or degree of influence
D: Direction vector

62

Chapter 5: Grid Attractors Components

Output

Gd: Resulting grid
W: Grid of weights (0-1)

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDirAtts.gh.
The example shows how points are attracted using a direction curve. The definition first creates a surface and
then divides it by a number to create the original grid. Then the Direction Attraction component creates
denser spacing towards the edges. This is because the normal direction of the points at the edge forms a
larger angle with the input direction compared to points towards the middle of the surface.

Draft Angle Attraction (ptSlopeAtts)
The Draft Angle Attraction (ptSlopeAtts) recalculates the input plane and the normal direction of each
grid point relative to the grid surface. It also calculates the corresponding grid of weights (influence).
Attraction can be magnified by increasing the Magnitude (M) value in the input. The edge points of the grid
always move within edge boundary keeping the outline of the grid intact.

Input

Gd: Input grid
M: Magnitude or degree of influence
P: Input plane. By default uses world x-y plane

Output

Gd: Resulting grid
W: Grid of weights (0-1).

63

Chapter 5: Grid Attractors Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSlopeAtts.gh.
The following example creates an evenly spaced grid using a surface, and then recalculates grid point
locations using the slope attractor.

Gaussian Curvature (ptGauss)
The Gaussian Curvature (ptGauss) shuffles a grid of points on a surface using surface Gaussian curvature.

Input

Gd: Input grid
S: Surface
M: Magnitude or degree of influence

Output

Gd: Resulting grid
W: Grid of weights (0-1)

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptGauss.gh.
Using the same surface as the previous section, the analysis graph shows us a uniform curvature; therefore,
the attraction by Gaussian does not change the grid.

64

Chapter 5: Grid Attractors Components

Mean Curvature (ptMean)
The Mean Curvature (ptMean) component shuffles a grid of points on a surface using surface mean
curvature.

Input

Gd: Input grid
S: Surface
M: Magnitude or degree of influence

Output

Gd: Resulting grid
W: Grid of weights (0-1)

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMean.gh.
In the top image, the surface is divided evenly using the underlying surface domain. The bottom part of the
definition uses Mean Curvature to attract points towards the area of highest curvature.

Point Attraction (ptPtsAtts)
The Point Attraction (ptPtsAtts) component calculates new point locations based on an attractor point or
points. It also calculates the corresponding grid of weights (influence). Attraction can be magnified by
increasing the magnitude (M) value in the input. The edge points of the grid always move within the edge
boundary, keeping the outline of the grid intact.

Input

Gd: Input grid
A: Attractor points
M: Magnitude or degree of influence. A negative input cause points to repel from the attractor

Output

Gd: Resulting grid
W: Grid of weights (0-1)

65

Chapter 5: Grid Attractors Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPointAtts.gh.
The following example generates a rectangular grid and then assigns a point in the middle of the grid to be
the attractor. The magnitude (M) is set to a negative value, therefore the points are repelled from the center.

If magnitude (M) is set to a positive value, points are attracted towards the attractors.

Random Attraction (ptRandAtts)
The Random Attraction (ptRandAtts) component calculates new grid point locations randomly. Grid points
will not collide or overlap.

Input

Gd: Input grid
M: Magnitude or degree of influence

Output

Gd: Resulting grid
W: Grid of weights (0-1)

66

Chapter 5: Grid Attractors Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptRandAtts.gh.
The example generates a rectangular grid and then shuffles the grid randomly. Notice that points are only
shuffled within their local region, and the shuffling does not produce overlapped regions.

Weight Attraction (ptWeight)
The Weight Attraction (ptWeight) component feeds a weight field or grid and controls attraction directly.
This is useful when you have defined the amount of attraction you want for each grid point.

Input

Gd: Input grid
W: Grid of weights (0-1)
M: Magnitude or degree of influence

Output

Gd: Resulting grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptWeight.gh.
The example uses a bitmap image to generate weights and then uses the image to shuffle points.

67

Chapter 6: Grid Utility Components

Chapter 6: Grid Utility Components
These components generate paneling grids and organize them in a tree structure where branches represent
rows of points.

Center Grid (ptCenter)
The Center Grid (ptCenter) component extracts the center grid of another input grid.

Input

Gd: Input grid
S: Base surface [optional]

Output

Gd: Center grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCenter.gh.
Use a rectangular grid as an input. The output is a grid of the centers of the cells.

Clean Grid (ptClean)
The Clean Grid (ptClean) component removes null rows and null columns in the input grid.

Input

Gd: input grid

Output

Gd: output grid

Convert to Diamond (ptToDiamond)
The Convert to Diamond (ptToDiamond) component converts rectangular grids to diamond grids.

Input

Gd: Input grid

Output

Gd: Diamond grid

68

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptToDiamond.gh.
Use a rectangular grid as an input. The output is a diamond grid.

Coordinates (ptCoordinate)
The Coordinates (ptCoordinate) component calculates grid (or cell) coordinates, which are the origin, and
x-, y-, and z-vectors for each grid/cell point. The x- and y-vectors are not normalized, and their length equals
the distance between grid points.

Input

Gd: Input grid
S: Input surface [optional]
E: Calculate coordinates for end points [optional – set to True by default]
F: Flip the z-direction [optional – set to False by default]

Output

O: Origin points
X: x vectors
Y: y vectors
Z: z vectors

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCoordinate.gh.
The example shows the coordinates of each cell in the grid. If the surface (S) input parameter is not available,
the component will calculate the surface using the input grid.

69

Chapter 6: Grid Utility Components

If the E input parameter is set to True, the coordinates for end points is calculated. The option to flip the
z-direction is used in the example image.

Coordinates 3D (ptCoordinate3D)
The Coordinates 3D (ptCoordinate3D) calculates the box cell coordinates between two grids including the
origin, and x-, y-, and z-vectors for each grid/cell point. The x, y, and z-vectors are not normalized and their
length equals the distance between cell points.

Input

Gd1: First input grid
Gd2: Second input grid

Output

O: Origin points
X: x vectors
Y: y vectors
Z: z vectors

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCoordinate3D.gh.
The example creates a rectangular grid then copies it in the z-direction. The Coordinates 3D component
takes the two grids as input and calculates x-, y-, and z-vectors for each cell.

70

Chapter 6: Grid Utility Components

Extract Column (ptCol)
The Extract Column (ptCol) component extracts columns from the grid.

Input

Gd1: Input grid
i: Column index

Output

P: List or grid of points

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCol.gh.
The example extracts the first column of the grid and then moves it in the z-direction.

It is also possible to input a list of indices to extract multiple columns in the form of a grid as in the following:

Extract Grid Indices (ptIndices)
The Extract Grid Indices (ptIndices) takes an input a grid of points as input and outputs two grids of
integers representing the i and j indices of the points. This component can be used to tag points.

Input

Gd: Input grid

Output

I: Grid of i indices
J: Grid of j indices

71

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptIndices.gh.
The example uses the Extract Grid Indices component to get the i,j indices of the points in a grid and then
uses the Grasshopper Concatenate component to tag the points with their indices. The structure of the grid
is the same as the indices.

Extract Item (ptItem)
The Extract Item (ptItem) component extracts a point (or list of points) in a grid given its i and j indices.

Input

Gd: Input grid

Output

i: Item(s) i index
j: Item(s) j index

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptItem.gh.
The example uses the Extract Item component to extract diagonal points of a square grid then draws a
polyline through them.

72

Chapter 6: Grid Utility Components

Extract Row (ptRow)
The Extract Row (ptRow) component extracts a row of points in a grid given the i index.

Input

Gd: Input grid

Output

i: Row index

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptRow.gh.
The example extracts the second and third rows of the grid and then moves these points diagonally, connects
the points to the original rows with lines, and generates cells out of original and extracted grids.

Flatten Grids (ptFlatten)
The Flatten Grids (ptFlatten) component flattens a grid to a linear list of cells. This component reorganizes
the grid so that the order of cells is linear and allows more control when mapping a list of modules to that
grid.

Input

Gd: Input grid

Output

Gd: Output grid of cells

73

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptFlatten.gh.
The example shows how the grid is reformatted when put through the Flatten Grids component. The grid has
two rows and four columns, so the initial tree has two branches with four elements in each branch. The
flattened grid creates sub-trees equal to the number of cells in the grid with each sub-tree holding four
elements organized in two rows and two columns.

Flatten 3D Grids (ptFlatten3D)
The Flatten 3D Grids (ptFlatten3D) component flattens two bounding grids into a linear list of bounding
cells. The Flatten 3D Grids component reorganizes the grids so that the order of cells is linear and allows
more control when mapping a list of modules to grid 3-D cells.

Input

Gd1: First input grid
Gd2: Second input grid

Output

Gd1: Flattened first grid
Gd2: Flattened second grid

74

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptFlatten3D.gh.
The example shows how the grids are reformatted when put through the Flatten 3D Grids component. The
input grids have two rows and four columns, so the initial tree has two branches with four elements in each
branch. Flattened grids create sub-trees equal to the number of cells in each grid with the sub-trees holding
four elements organized in two rows and two columns.

Grid Density (ptDense)
The Grid Density (ptDense) component either increases or decreases the density of the grid. An optional
input surface makes sure added grid points lay on the surface.

Input

Gd: Input grid
S: Grid surface
Di: Change is row density. This can positive, negative or zero
Dj: Change is column density. This can positive, negative or zero

Output

Gd1: Output grid

75

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDense.gh.
You can increase or decrease the density of a grid. In the example Di = -1. This removes every other element
in each row. Setting Dj=1, inserts an additional grid point between each two column elements.

Before changing the density (left). After changing the density (right).

Grid Dir (ptDir)
The Grid Dir (ptDir) component reverses the grid row and column directions.

Input

Gd: Input grid
iR: Reverse row direction when set to True
jR: Reverse column direction when set to True

Output

Gd: Reversed grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptDir.gh.
The rectangular grid is tagged to show the row/column location of each grid point. Notice that the base point
(00) is in the lower left point.

76

Chapter 6: Grid Utility Components

If we reverse the row and column directions, the base point (00) changes to the top right point.

Replace (ptReplace)
The Replace (ptReplace) component is used to replace one or more points in a grid.

Input

Gd: Input grid
T: List of one or more points
i: Corresponding row location of the point to be replaced
j: Corresponding column location of the point to be replaced

Output

Gd: Output grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptReplace.gh.
The example shows how to replace one element in the grid. A Cellulate component was added to show the
mesh of the new grid.

77

Chapter 6: Grid Utility Components

Square Grid (ptSquare)
The Square Grid (ptSquare) component turns a jagged grid of points into a rectangular grid filling the
missing points with NULL points.

Input

Gd: Input grid

Output

Gd: Squared grid
i: Number of rows
j: Number of columns

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSquare.gh.
The example shows how to replace one element in the grid. A Cellulate component was added to show the
mesh of the new grid.

SubGrid (ptSubGrid)
The SubGrid (ptSubGrid) component extracts part of the grid.

Input

Gd: Input grid
X0: Min x index for the sub grid
Y0: Min y
X1: Max x
Y1: Max y

Output

Gd: Sub grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSubGrid.gh.

78

Chapter 6: Grid Utility Components

The example shows how extract a sub-grid dynamically using sliders.

Surface from Grid (ptGridSrf)
The Surface from Grid (ptGridSrf) component creates a NURBS surface from a given grid. The surface can
be set to use grid points either as surface control points or to attempt to generate a surface that goes through
the grid points. The former yields successful result more often.

Input

Gd: Input grid
T: When set to True, attempts to generate a surface that goes through the grid

Output

S: Surface

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptGridSrf.gh.

79

Chapter 6: Grid Utility Components

The example generates two surfaces using the two grids created by the Polar 3D Grid component

Trim Grid (ptTrim)
The Trim Grid (ptTrim) component trims a grid using base polysurface. The grid can be trimmed inside,
outside, or points can be shifted out to the edge.

Input

Gd: Input grid
B: Trim polysurface
M: Trim method

0=inside
1=outside
2=edge

Output

Gd: Output grid

80

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptTrim.gh.
This example shows various types of trimming a reference surface.

Inside trimming. M=0.

Outside trimming. M=1.

81

Chapter 6: Grid Utility Components

Edge trimming. M=2.

Wrap Grids (ptWrap)
The Wrap Grids (ptWrap) component copies rows or columns in place and appends to the end of the grid.
This is sometimes needed to close a grid or extend far enough to accommodate patterns that stretch more
than two grid points.

Input

Gd: Input grid
D: Direction

0=add rows
1=add columns

N: Number of columns/rows to wrap
I: Starting index of the row or column to copy in place

Output

Gd: Output grid

82

Chapter 6: Grid Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptWrap.gh.
The first definition shows a gap when adding panels. This is because the grid is not closed in the v- or
y-direction, which means the first column of points needs to be appended to the end of the grid. For example,
first row (labeled 0,0-0,1-…-0,5) needs an additional point (0,6) that overlaps (0,0) to close that row. The
same goes for the remaining rows.

Adding the Wrap Grids component appends one more column at the end of the grid to close it.

83

Chapter 7: Panel 2D Components

Chapter 7: Panel 2D Components
These components generate panels using one grid.

Cellulate (ptCell)
The Cellulate (ptCell) component generates list of wires, borders, and meshes of the paneling cells using a
grid of points. It is possible to input multiple grids in which case, the output will be organized in main
branches that represent the number of input grids.

Input

Gd: Input grid

Output

W: List of wires (4 wires per cell)
C: List of corners (4 points per cell)
M: List of meshes (one mesh per cell)

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptCell.gh.
This example creates a 4x4 grid (9 cells). The Cellulate component generates lists of cell wires, cell corners,
and meshes.

This example shows the output when the input is more than one grid.

84

Chapter 7: Panel 2D Components

Generate Borders (ptBorders)
The Generate Borders (ptBorders) component creates a structure of polycurve borders. The output is
organized in branches that represent the rows of the paneling structure.

Input

Gd: Input grid
PS: Panel shape

0=straight
1=pull to the reference surface S
2=isocurve
3=shortest path

S: Reference surface. One is created from the grid if none is provided

Output

C: Output borders

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptBorders.gh.
The output in this example has six branches with four curves (borders) in each branch.

Generate Faces (ptFaces)
The Generate Faces (ptFaces) component creates a structure of faces. The output is organized in branches
that represent the rows of the paneling structure.

Input

Gd: Input grid
PS: Panel shape:

0=straight
1=pull to the reference surface S
2=iso
3=shortest path

S: Reference surface. One is created from the grid if none is provided

Output

F: Output faces

85

Chapter 7: Panel 2D Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptFaces.gh.
The output in this example has six branches with four faces in each branch.

Generate Flat Faces (ptFlatFaces)
The Generate Flat Faces (ptFlatFaces) component creates a structure of best-fit planar faces. The output
is organized in branches that represent the rows of the paneling structure.

Input

Gd: Input grid
M: Flattening method

0=best fit planar faces
1=fit plane through (first, second, third) corners
2=fit through (second, third, fourth)
3=fit through (third, fourth, first)
4=fit through (fourth, first, second)

B: Optional reference base polysurface

Output

F: Output planar faces.
D: Deviation map of output faces from the grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptFlatFaces.gh.
The output in this example has 6 branches with four planar faces in each branch. Faces might not join if the
grid is free form, but they touch at least at one point and they do not overlap.

86

Chapter 7: Panel 2D Components

Morph 2D (ptMorph2D)
The Morph 2D (ptMorph2D) component distributes 2-D modules over a given paneling grid.

Input

Gd: Input grid
PC: Unit module (list of curves)
si: Shift in the i direction (between columns)
sj: Shift in the j direction (between rows)

Output

Gd: List of output curves

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph2D.gh.
The module in this example consists of two curves. Those are distributed on the grid using the Morph 2D
component. The distributed unit module occupies the grid unit area bounded by four points.

Morph 2D List (ptMorph2Dlist)
The Morph 2D List (ptMorph2Dlist) component is a variable distribution of a list of modules using
attractors.

Input

Gd: Input grid
W: Grid of normalized weights (values between 0 and 1) that has a structure identical to the input points grid
PC: List of pattern curves to be distributed following the weights map
si: Shift in the i direction (between columns)
sj: Shift in the j direction (between rows)

Output

C: List of output curves

87

Chapter 7: Panel 2D Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph2Dlist.gh.
The input consists of ten polygons (with from 3 to 12 sides). Those are distributed to the grid randomly. The
weights grid is generated using the Random Attraction component.

Morph 2D Map (ptMorph2DMap)
The Morph 2D Map (ptMorph2DMap) component maps each module in a list to one grid cell. The option to
repeat the last module to the remaining cells is useful when specific modules should be applied to specific
locations on the grid.

Input

Gd: Input grid
PC: List of pattern curves to be distributed in order
F: Flatten a grid into a list of cells
R: Repeat the last module. If the list of modules is less than the number of cells, use this option to map the
last module to the rest of the grid cells

Output

C: List of mapped curves

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph2DMap.gh.
In the example, we created 11 rectangles rotated slightly from one to the next. The input grid has 15 cells.
Rectangles are mapped to the grid cells so as to repeat the last one to cover the rest of the cells.

88

Chapter 7: Panel 2D Components

Morph 2D Mean (ptMorph2DMean)
The Morph 2D Mean (ptMorph2DMean) component copies rows or columns in place and appends them to
the end of the grid. This is sometimes needed to close a grid or extend the grid far enough to accommodate
patterns that stretch more than two grid points.

Input

Gd: Input grid
D: Direction

0=add rows
1=add columns

N: Number of columns/rows to wrap
I: Starting index of the row or column to copy in place

Output

Gd: Output grid

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph2DMean.gh.
Using the Point Attraction component, this example generates tween shapes between a circle and a triangle
and maps them to the grid.

Panel Connections (ptMPanel)
The Panel Connections (ptMPanel) component generates fast and efficient pattern coverage through
connecting grid points.

Input

Gd: Input grid
si: Shift in the i direction (between columns)
sj: Shift in the j direction (between rows)
Pn: Pattern string

89

Chapter 7: Panel 2D Components

Output

W: List of wires
C: List of polycurves
M: List of meshes

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMPanel.gh.
This example creates a diagonal grid using Panel Connections component. The string defines unit
connections assuming that the base point of the grid has (0,0) index. Shift in i and j is set to 2 because the
diamonds span over 2 unit grids.

90

Chapter 8: Panel 3D Components

Chapter 8: Panel 3D Components
These components generate 3-D panels using two bounding grids.

Cellulate 3D Grid (pt3DCell)
The Cellulate 3D Grid (pt3DCell) component generates list of wires, cell corners, and meshes of the 3-D
cell. The component takes two bounding grids and outputs list of wires connecting corresponding grid points, a
list of corner points (8 points for each cell), and a list of mesh boxes.

Input

Gd1: First input grid
Gd2: Second input grid

Output

W: List of wires by rows
C: List of corners (8 points per cell)
M: List of mesh boxes by rows

Example

Open ..\PT_GH_PrimerExamples\Component Examples\pt3DCell.gh.
The two bounding grids enclose 15 cells organized in three rows with five cells in each row. The output is
organized by rows.

Morph 3D (ptMorph3D)
The Morph 3D (ptMorph3D) component morphs 3-D modules to 3-D cells enclosed by two bounding grids.

91

Chapter 8: Panel 3D Components

Input

Gd1: First input grid
Gd2: Second input grid
PO: Input pattern object
BO: Input bounding objects for pattern
si: Shift in unit grid in i-direction
sj: Shift in unit grid in j-direction
p: If set to True then perform smooth morphing
S1: First bounding surface (optional) corresponds to Gd1
S2: Second bounding surface (optional) corresponds to Gd2

Output

O: Output morphed objects

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph3D.gh.
This example morphs a box smoothly between two bounding grids and surfaces.

Morph 3D List (ptMorph3Dlist)
The Morph 3D List (ptMorph3Dlist) component morphs 3-D list of modules to 3-D cells enclosed by two
bounding grids.

Input

Gd1: First input grid
Gd2: Second input grid
W: Weight map
PO: Input list of pattern object
BO: Input bounding objects for pattern
si: Shift in unit grid in i-direction

92

Chapter 8: Panel 3D Components

sj: Shift in unit grid in j-direction
p: If set to True, perform smooth morphing
S1: First bounding surface (optional) (corresponds to Gd1)
S2: Second bounding surface (optional) (corresponds to Gd2)

Output

O: Output morphed objects

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph3Dlist.gh.
The example morphs a list of cylinders between two bounding grids and surfaces.

Morph 3D Map (ptMorph3DMap)
The Morph 3D Map (ptMorph3DMap) component maps each module in a list to one 3-D grid cell.

Input

Gd1: First input grid
Gd2: Second input grid
PO: Input list of pattern object
BO: Input bounding objects for pattern
F: Flatten the grid cells into one list of cells to be able to map in order
R: Repeat last object to remaining cells, if any
p: If set to True then perform smooth morphing
S1: First bounding surface (optional) (corresponds to Gd1)
S2: Second bounding surface (optional) (corresponds to Gd2)

93

Chapter 8: Panel 3D Components

Output

O: Output morphed objects

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMorph3DMap.gh.
The example morphs a list of rotated boxes between two bounding grids and surfaces.

Orient to Grid (ptOrient)
The Orient to Grid (ptOrient) component maps 2-D or 3-D modules to a grid. If pattern reference points are
not provided, bounding box points of the pattern is used.

Input

Gd: Input grid
PO: Input pattern
si: Shift in unit grid in i-direction
si: Shift in unit grid in i-direction
bP: Base point for the module
xP: X direction reference point
yP: Y direction reference point
rP: Fourth reference point
R: Rigid orient
F: Flip
S: Base surface for smooth morph (optional)

94

Chapter 8: Panel 3D Components

Output

O: Output morphed objects

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptOrient.gh.
The example morphs a trimmed surface to a grid.

Panel 3D Grid (ptMPanel3D)
The Panel a 3D Grid (ptMPanel3D) component creates 3-D paneling using modules defined by connecting
grid points.

Input

Gd1: First input grid
Gd2: Second input grid
si: Shift in unit grid in i-direction
sj: Shift in unit grid in j-direction
Pn: Pattern string

Output

W: Line wires
C: Polylines
M: Meshes

95

Chapter 8: Panel 3D Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptMPanel3D.gh.
This example creates a custom module and populates it between two bounding grids.

96

Chapter 9: Panel Utility Components

Chapter 9: Panel Utility Components
These components help create special panels.

Iso Edges (ptIsoE)
The Iso Edges (ptIsoE) component helps extract iso-edges on a given surface using linear edges. It uses
the two end points of the input lines and generates an isocurve on the surface using the surface uv-directions.
Both end points need to lie on the surface and align on the same surface isocurve.

Input

L: Lines to extract the isocurves
S: Input surface

Output

C: Resulting isocurves

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptIsoE.gh.
If pulled straight edges do not end up on surface, edge curves can be missing or short.

Pull Edges (ptPullE)
The Pull Edges (ptPullE) component pulls linear edges to a surface.

Input

L: Lines to extract the isocurves
S: Input surface

Output

C: Resulting pulled curves

97

Chapter 9: Panel Utility Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptPullE.gh.
When the two end points of the line segments align with the surface u and v, the result is clean continuous
curves.

Short Edges (ptShortE)
The Short Edges (ptShortE) component extracts shortest path on surface between the two end points of
input linear edges.

Input

L: Lines to extract the iso curves
S: Input surface

Output

C: Resulting short curves

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptShortE.gh.
If the two end points are within the surface domain, the shortest path will always result in a complete curve,
but will not necessarily follow the iso-direction of the surface.

98

Chapter 10: Select and Bake Grids Components

Chapter 10: Select and Bake Grids Components
PanelingTools is an integrated plugin for Rhino and Grasshopper. Sometimes it is useful to go back and forth
between the Rhino and Grasshopper environments.

Bake Grid (ptBakeGrid)
The Bake Grid (ptBakeGrid) component saves grids from Grasshopper as Rhino geometry.

Input

G: Input grid(s)
S: Name of the grid (string)
B: Bake the grid when set to True. Note: Set the Toggle component back to False once the geometry is
saved or a new set of geometry will be created each time the component is used.

Output

Paneling grid(s) saved to Rhino as geometry.

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptBakeGrid.gh.
You can bake more than one grid from Grasshopper to Rhino.

Select Grid (ptSelGrid)
The Select Grid (ptSelGrid) component brings grids created and edited in Rhino into Grasshopper.

Input

Click on the icon in the component to select a paneling grid created with PanelingTools.

Output

Ordered grid in Grasshopper

99

Chapter 10: Select and Bake Grids Components

Example

Open ..\PT_GH_PrimerExamples\Component Examples\ptSelGrid.gh.
Paneling grids created in Rhino sustain their structure when selected into Grasshopper as shown in the
following.

Version (ptVersion)
The Version (ptVersion) component displays the current version of PanelingTools for Grasshopper.

100

	Chapter 1: Getting Started with PanelingTools
	Download and Install
	Technical Support
	The Main Menu
	Toolbars
	Overview of Paneling Elements
	Create Paneling Grids
	Create Grids with Grasshopper Standard Components
	Create Grids with PanelingTools Components
	Create a Grid with Reference Geometry

	Grid Utilities
	Paneling Patterns
	Attractors as a Design Element
	Point Attraction
	Bitmap Attraction

	Select a grid
	Bake a Grid

	Chapter 2: Tutorials
	Diamond Panels
	Fixed Gaps Between Panels
	Loft Morphed Curves
	Spiral Staircase
	Parametric 2D Truss
	Parametric Space Frame
	Variable Wall
	Tower

	Section II: Components Reference
	Chapter 3: Curve Components
	Divide Distance (ptDivideDis)
	Divide Distance with Reference (ptDivideDisRef)
	Divide Length (ptDivideLen)
	Divide Length with Reference (ptDivideLenRef)
	Divide Number (ptDivideNum)
	Divide Parameter (ptDivideParam)

	Chapter 4: Grid Components
	Compose Grid (ptCompose)
	Compose Grid Number (ptComposeNum)
	Intersect Curves (ptUVCrvs)
	Planar Extrude (ptPlanarExtrude)
	Planar Grid (ptPlanar)
	Polar 3D Grid (ptPolar3D)
	Polar Extrude (ptPolarExtrude)
	Polar Grid (ptPolar2D)
	Surface Distance (ptSrfDis)
	Surface Domain Chord Distance (ptSrfDomChord)
	Surface Domain Length (ptSrfDomLen)
	Surface Domain Number (ptSrfDomNum)
	Surface Parameter (ptSrfParam)

	Chapter 5: Grid Attractors Components
	Curve Attraction (ptCrvsAtts)
	Direction Attraction (ptDirAtts)
	Draft Angle Attraction (ptSlopeAtts)
	Gaussian Curvature (ptGauss)
	Mean Curvature (ptMean)
	Point Attraction (ptPtsAtts)
	Random Attraction (ptRandAtts)
	Weight Attraction (ptWeight)

	Chapter 6: Grid Utility Components
	Center Grid (ptCenter)
	Clean Grid (ptClean)
	Convert to Diamond (ptToDiamond)
	Coordinates (ptCoordinate)
	Coordinates 3D (ptCoordinate3D)
	Extract Column (ptCol)
	Extract Grid Indices (ptIndices)
	Extract Item (ptItem)
	Extract Row (ptRow)
	Flatten Grids (ptFlatten)
	Flatten 3D Grids (ptFlatten3D)
	Grid Density (ptDense)
	Grid Dir (ptDir)
	Replace (ptReplace)
	Square Grid (ptSquare)
	SubGrid (ptSubGrid)
	Surface from Grid (ptGridSrf)
	Trim Grid (ptTrim)
	Wrap Grids (ptWrap)

	Chapter 7: Panel 2D Components
	Cellulate (ptCell)
	Generate Borders (ptBorders)
	Generate Faces (ptFaces)
	Generate Flat Faces (ptFlatFaces)
	Morph 2D (ptMorph2D)
	Morph 2D List (ptMorph2Dlist)
	Morph 2D Map (ptMorph2DMap)
	Morph 2D Mean (ptMorph2DMean)
	Panel Connections (ptMPanel)

	Chapter 8: Panel 3D Components
	Cellulate 3D Grid (pt3DCell)
	Morph 3D (ptMorph3D)
	Morph 3D List (ptMorph3Dlist)
	Morph 3D Map (ptMorph3DMap)
	Orient to Grid (ptOrient)
	Panel 3D Grid (ptMPanel3D)

	Chapter 9: Panel Utility Components
	Iso Edges (ptIsoE)
	Pull Edges (ptPullE)
	Short Edges (ptShortE)

	Chapter 10: Select and Bake Grids Components
	Bake Grid (ptBakeGrid)
	Select Grid (ptSelGrid)
	Version (ptVersion)

